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A THEORETICAL STUDY OF THE MOMENT ON A BODY IN A COMPRESSIBLE FLUID

By CARLKAPLAN

SUMMARY

Z% extension to a compressible $uid of LagaiUy’s
theorem on the moment on a body in an incompressible
jluid and Poggi’s method of ireating the jlow of compre~-
eible jluidg are employed for the determination of the
efect of compresm”bdityon the moment on an arbitra~
body. My the case of the twodime nsiunal ewbsonicj%w
of an ideal compre8m”blejluid is considered.

As example8 of the applicatwn of the general theory,
two lve[l-linoumsy8tem8 of proj?le8 are treated; namely,
the elliptic projife and the symmetrical Joukow8ki proj%e
with.sharp trailing edge8.

The effect of compressibility on the po&on of the
center of pre8eure is &o d&xe8ed. La order to deter-
mine this ef ect, it ie n.-ms8aryto calculate the additional
circulation induced by the compreseibihly of the j!?uidfor
both the eUiptic and the tJoukow8h4projile8. For thtxe
two type8 of projile, the center8 of pre8eu.rein the com-
pressible and the incompressible jluida are found to coin-
cide for a definite andfairly d angk of attack, which
ie e8sentiaUydependenl on the thickn&88coe.@ient8. For
ang/k?8of attack I?888than this netiral angle, the center oj
pressure in the compressiblej?uid is jartherfiom the no8e
and, for angle8 of attack greater than the neutral angle,
nearer to the no~e than the center of pressure in the in-
compressible$M41.

Secerai numerical examples of both z%eetliptic and the
Joukowski pro$i& are gimn. The resuU8 show that,
although the ej$ect of campreseibility on the moment and
on the l#t may be largel the ejWt on the center of pressure
for conventional profde8 is negligibk. ThJUS,for a
Jowkow8ki proji.le, the mazimunz thickn.w oj which ie
equal to IS percent of the chard, the center of preeeure
movt?8towurd the no8e a distance equal to only 0.1$ per-
ceni of the chord, where the an.#e of attack is 6° and
D&#l.70.

NOTATION

GENEBALSYMBOLS

& q, rectangular Cm-te.ian coordinates in the
pkme of the obsimcle,

2, y, rectanguhr Cmtesian coordinates in the
plane of the circle.

f=t+iq, Z=x+iy

r, 8, poIar coordinates in the plane of the circle.
R, radius vector of a point far removed from

the obstacle and also of a point far re-
moved from the ocmcesponding circle.

TO,radius of circle into which the profile is
mapped,

0,, OR,component of the velocity in the radial
and the circumferential directions in the
z plane.

z?,magnitude of the velocity in the plane of
the obstacle.

c, magnitude of the local velocity of sound.
p, density of the fluid.
p, static pressure of the fluid.

%, CO,~, pO, corresponding mrggnitudes in the undis-
turbed part of the fluid.

T, ratio of tho spe~c heate (GJc,).

o
32

P=
6

~square of the ~Mach number.

g, angle of attack.
l?, circulation about the obstacle.

K=~2rrlj%
L=POOOII,lifting force on the obstacle.

Ml
cc, Ci,

mom-mt on the obstacle.
centers of preasmre, respectively, in the

compressible and the incompressible
fluids.

Subscripts c and i refer, respectively, to
the compressible and the incompressible
fluids.

additional velocity components due to
compressibility at a point P(R, ~) far
removed from the circle in the z plane.

complex velocity potential of the fluid.

complex velocity in the plane of the ob-
stacle.

complex and conjugate complex coei3i-
cients, respectively, in the power series

development of # (see equation (12)).
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SYMBOLS PERTAININGTO ELUPIYCPROFILE

c, semifocal distance.
t, thicknes9 ratio of ellipse (ratio of semi-

minor and mmimajor axes).

tanh a=t
M, N, functions of the thiclamss coefficient t only

(see equation (24)).

SYMBOLSPEETAIN~GTO JOIJEOWSKIPl?OFILZS

q thickness coefficient (see .fig. 4).

h=*-
-..-

I, J, (see equation (26)).
M, iV, functions of the thickness coefficient.5 only

(see equation (29)).

DERIVATION OF THE FORMULA FOR THE MOMENT

Theodorsen’s method (reference 1) of extending
Lagally’s formula for the force on a body in an incom-
pressible fluid to a compressible fluid may be used to
obtain the corresponding formula for the moment.
The body is Exed in an infinite two-dimensional stream
of a frictionless compressible fluid flowing uniformly&
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FIGUREl.—Dlract[onsof tangentand normelon a contour.

the far field. Then the moment exerted on the body
with respect to the origin of the coordinate system is
given by (fig. 1)

M=- Jf[r n]p & (1)

where the positive direction of the unit nornud vector n
is taken from the boundary into the fluid, p is the
pressure of the fluid, [r n] is the vector product of the
radius vector r and the unit normal vector n, and ok is

the element of length along the profile taken positively
in the direction of the unit tangent vector t. }Vith the
directions of the unit tangent veotor t and the unit
normal vector n so chosen that they form a right-hand
system, a positive value for the moment corresponds to
a oountero.loctie rotation.

According to one of the generalizations from Gfiuss’
theorem, it maybe shown that

1, curl prdS=&[r nlp d8+&[r n]p ds

whexe dS is the element of surface in a region S’ in-
cluded between the obstacle i and an arbitrttry curve
o enolosing it.
Now .-

curl pr=~ad p r] “-

and, from the Euler equations of motion for steady
flow (reference 1),

grad p=–1/2 pgrad ZY
Therefore

curl pr= —1/2 p bad V: r]

Equation (1) then becomes

M=Y, [r n] p Gk+l/2J P kgrad @ r] ds

Since the outer boundary is arbitrary, it may be chosen
to be a large circle so that the veotor product [r n]=O.
Hence.

M= l/2Ja p Qrad & r] ds
But

grad I?=2 (v grad) v+2 [v curl v]
and

[(v grad) v r]= (v grad) [v r]
Therefore

14.= y, p(v grad)[v r]dll+~~ p{[v curl v]r}dS (2)
According to Gauss’ theorem, if F denotes a scalar
function, then

J, div pFvo?S= –J PF(Vn)d8–fo PF(V n)ds
But

div PFv=F div pv+p(v grad)F
Hence”

J’ P(Vgrad)FdS= – J, F div pvd5’
–J PF(V n)ds=~~ PF(V n)ok

From the manner in which F occurs in this formula,
it is clear that the formula remains valid if F is re-
placed by a vector point function, say [v r]. That is,

y. P(Vwtd)[v r]dS=J, [r v] div Pvds
+X ~[r V](Vn)~+yo p[r V](Vn)~

Substituting from this equation into equation (2), it
follows that

M=JO p[r V](Vn)ds+f, [r v] dh PvdS
–A p{r[v curl v])dS

(3)

where Jf p[r V] (V n)d8= Osince (V n)= O everywhere on
the obstricle.1

JR the problem considered herein, the comprwsible
fluid is of uniform velocity 00in the undisturbed stream

1Tbfs formulafor tbo moment may be extendedh threedlmeneioneby lettins
r denotethe re810nof flow betweenthe My and a lam sphereenclosfngIti & h
thenreplacedby&, theelement of eurfaceontheouterwhew cmddS fLIreplemd
by dr, the ekment of volume h tbe regfon of 130wr, A@ the moment now has
threeeampcmenteend nmetbe wrfttenee a VOCbX,L e., K
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and, furthermore, is assumed to be irrotational and
free of sources in the region of flow 8. The condition
for irrotational motion is simply that curl v=O, and
the absence of sources means that div P v= O. There-
fore, equation (3) becomes

.3f= J p [r v] (v n) ds (4)

where it is recahd that the outer boundary has been
assumed to be a huge circle of radius l?. The vector
product [r v] is then eqmd to l?op and the scalar prod-
uct (v n) is equal to —oB since n= —R/R. Therefore

AI=–RzJ~pvBv& (5)

This simple expression for the moment about the origin,
of the restitant force acting on the body, can be directly
obtained by considering the rat-e at which angular mo-
mentum passes out of the region included between the
outer circle and the body. Thus, the momentum per
unit time passing normally through the element ds is
P Rv v~ dp and the arm is R sin vR. The angular mo-
mentum is therefore PIP v sin VR QEdp or pR2 v~ Vpdp
and equation (5) fo~ows.

GENERAL DEVELOPhlENTS

lt may be welI to emphasize at this point that the
main problem of this paper lies in obtaining useful
expansions for the velocity components w~ and VPof a
compressible fluid.

These expansions are obtained by making use of
Poggi’s conception of compressible flow. Thus the
basic ~erential equation for the steady flow of a
compressible fluid may be written as (reference 2)

The expression on the left-hand side is div v, so that the
expression on the righhhand side may be considered to
represent a source distribution of a strength given by

h the plane of the circle into which the profile of the
obstacle is mapped by a suitable conformal transforma-
tion, the strength of the source distribution may be
written as

(6)

where
r, O are

plane
the polar coordinates of a point in the
z(=z+iy) of the circle.

h=;, where TOis the radius of the circle into

which the profile is mapped.

~,=_~, ~,= 1 ?4 h—--~f w ere d is the velocity

potential of the flow.
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v, the magnitude of the velocity of the fluid in
the plane of the profile.

c, the magnitude of the 10CSIvelocity of sound.

Poggi’s method of approximating the flow of a per-
fect compreasible fluid past m obstacle is based on the
fact that the incompressible fluid is a good first ap-

proximation. A first approximation for the source
distribution given by equation (6) is therefore obtained
by substituting for v,, n, and @ the values belonging
to the incompressible fluid. lt is further assumed that

the A1ach number aJcO is srrd so that only terms
in-rol-ring the ~ovwst order of ?JcO are to be considered.
This assumption then limits the application of the
analysis to stream -rSIocities small in comparison with
the velocity of sound. The disturbances to the main
flow due to the presence of a body in the fluid may,

however, be hrge.z
The density p and the pressure p of the fluid are

then determined by the following equations (reference

2):‘=++=W2P

(7)

where the adiabatic equation of state has been adopted.
AIso, P= (%/cJz and Pi and Vc are, respectively, the
velocities in the incompressible and the compressible
fhlida.

It follows nom equation (5), -with the stipulation that
only terms involving the square of the llach number are
to be retained, that:

lt is clear that the evaluation of the second integral
presents no di.fliculties, for it involves only expressions
of the well-knowm incompressible fluid-velocity com-
ponents. The difEculty of the problem lies maidy in
determining g the velocity components v~ and Vq for a
compressible fluid. Since the first integxd is taken
around a circle whose radius R may be infinite, it is
obvious that the developments for vE/voand vJvOin the
neighborhood of in&ity need not go beyond the l/Rg
terms.

In order to obtain the seri= for v~th and WJQ, it is
expedient to consider first the effect of a single source
of unit strength situated at a point Q(r, 6) in the plane
of a circle. ln the presence of a circular boundary of
radius To,the velocity induced by a unit source at any

i In the a proxbnetkmmede by Glmmrt(rekrenee3), a Is not errmdlcompered
kwithr. hut e dktnrbencegto themeln flowcceree.snrnedto be smell.
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point P(R, 6) external to the boundary is given by
(fig. 2):

w Q(Y,@)
0

1/
s

. .

I

I
lWuaE 2.—Imagaof a slrnple900KWwith ragardto a olrde.

dw ( )~+~–~ =–%+h
z=– 2,–2* Z,–* 2,

where S is the point inverse to Q with respect to the
circle;

T02~
zP=Reib; .zQ=reie;and zs=~e’.

Then

or since

(–V~+it%)f@= –V=+hv

for r,<r<R

1 + sin (0—6)
V8=—.

%-2+ Cos (e—d)++2

Apxsin(e–(?)
–i l–2Apx cm (e–a) + x.%’

and for R<r<~

1
+ Sin (e+)

Qb=— _
*

%-* cm (e–r5) ++

1 XPXsin (0–6)
–z 1–2kpA Cos (9–6) +WV -

where h=r~r and AP=rO/R.
Then, making use of the expansion

l–f
l–2q Cos (e–a) +f

=l+2n~ Cos ?@-ti)

it follows that the components of the velocity induced
at any point P(R, d) by the source distribution given
by equation (6) are:

and

SS
AV6 P L

*2 sin (e—t)
—. —
Vo 4T x, o2*F @do

1–2* Cos (e–&)+*

where

The next step is to obtain the Fourier series expansion
of the function ~ for an arbitrary profile. The profile
is derived from a circle by means of the general con-
formal transformation

@z’+$+~*+. . .

where the coeilicients a~ are, in general, complex. h
order to obtain the velocity of the fluid in the plane of
the profile, it is first necessary to determine the veIocity
potential of the flow past a circle (fig. 3). Thus, sup-
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pose that the undisturbed %OWis of veIocity rOinclined
at an angle ~ to the negative direction of the real axis
and that the circulation is denoted by I’, k terms of

Y’ Y
Q(n,8J

FtoL!rcE&-Re18tfon L.

/

reenzplenes employedIngened eonfornmlkensfcmnntion.

the complex coordinate 2, with origin at the centar of the
circle, the potential function of the flow past the circle is:

(11)

Also, the variables z and z’ are connected by the equa-
tion

Zf= z+mei’
Therefore

Substituting for z’ in terms of z and expanding in
descending powers of z, this expression becomes:

lt folIows then, that:
ldw ‘A=——= z–Q d~ n-aZ*

where the .4.’s are, in general, complex.
In order to introduce the angle 0-6, the general

term of this series is rnuh.iplied by e+ti/e-i*.
Then

1 dw “ Ate-m
~ ~=~ Peik(E-J)

585

Hence

l?” . Aj@(j-k)6
—=
%2 p ef(j-k) (e-o

-O k=O
#Fk

The real and
re9pectiveIy:

and

Let.

A&x,e{(j-k)6—~2Afi-fu-k)6
—t 2

:–k=n

.

where n changes sign when j and k are interchanged
and therefore takes values from —@ to ~.
Then

j+k=n+2k

and the expression for w’/%s,a real quantity, becomes:

From the definition of n, it fo~ows that:

A-.k=f%wk

md

B-n-k= —Bn,~

The terms of equation (13) can therefore be grouped in
pairs, thus:

Alsoj from equation (11),

v,
Z=– (1–v-) Cos (t?-+) Cos (6+ p)

+ (1–A’) sin (e–a) a (8+13)
and

:= (l+k’) Cos (e–a) sin (a+p)

+(l+A’) sin (6–6) Cos (d+p)+m

where

K=~
2n-r@!Q

(14)

(15)
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Then, by means of equations (14) and (15), it becomes
a simple mattm to Qbtain tie Fourier. sines for th~
function F. When the FouriM series for F is substi-
tuted into equations (9) and (10) and all terms con-
taining powers of AP higher than the second are neg-
lected, it follows, after some rather tedious but element-
ary integrations; that:

AVR
‘hPL4,0

_= —-
Vo ? Cos (t+ /3)–Bl,o sin (b+fi)]

–$%,, cog (6+ /3)+KR,OIM h .AP

[
–/LAp* ;A,l Cos (6+ /9)+$42,0 Cos (~+ P)

(16)

and

‘V~– ‘AP[z41o sin (3+ n?)–Ih,o Ui3 (~+ B)]
V02’

P Ao 1sin (6+ 19)+.KAl,o]h# log hP–iJ ,

-.

“ A,. Sin (8+ B)+1%,. Cos (6+ p)+~p’ ~1 n-l-l
(17)

Use has been made of the following defigiti integrals
in obtaining Av@o:

J ~z [
*,sin (++) sin ?Z(HW8= :h._l H ;::

o 1–2h Cos (8–6) +

J
2*ain (O—a)cm .n(fl-~)ti=o
o l–2h Cos (6–6) +h’

The velocity of the compressible fluid in the plane of
the circle then has the following components:

()
VR
Go =– (1–xp’) 00s @+ f?)+*

and I (18)

()
V. ,= (1+X,’) sin (d+fl)+ APK+*I

. .
V8—

The calculation of the momant is facilitated by
expressing the veloeity of the compressible fluid ‘h

complex form. Thus, as in the case of an incompres-
sible fluid, a complex velocity i~ defined in the following
way:

Ka=(-%+’:):-fa
Then equation (8) for the moment assumes the B]asius
form:

where the integrals are taken around a circle whose
radius R approaches infinity.

Noti,-from equations (13), (16), (17), and (18), the
expr~ion for l/v. (dw/dz)C may be written as:

Also, from equation (12) for & $!:

_ Ao=e@, A,=Xro, A,=b2eJf~2~J–r~e-f$
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It may be noted that this expression is not an ana-
lytic function of z, since powers of R ocaur in some of
the terms.

The first integraI on the right-hand side of equation
(19) for ~1, then becomes:

g)

l.dw ‘dz
–$otb’ R. P. – —tb dz . ~~ ~dz

=–+ma)’ R. p. $(+ $~(l+~+w+ “ “ “)~dz

=2m62R0/ & 2(P+7) +p~~Or~ cos (B+r)

+@b’pov: h 2(B++

—

+&@i R. p. e&&~~)A~

&An+z
1

—Zrh%~ R. P. idfp~l(n+ l)~ow

and the second inhgral:

-&?@,R.P.$(,-$)(:~~$dz

=fp2#p@/ sin 2 (/9++ +p@@m Cos (/9+1’)]

Therefore

34.=34(1 +;)+ A%Arm Cos (P+ J’)

+~[–~~form cos (B++

—

+~hqri R. p. ei%,n~~ ~) *

m Z&z

1
(20)—ZT%VO*R. p. ~~pn~(n+ I)To*”

where Mi=2rb2m~2 sin 2(B+T) + ~Wo17~mcos (p+ v) is
the moment due to an incompressible fluid. The cir-
culation r consists of the incompressible part r i and
the additional oirculation A17related to the additional
flow.

Equation (2o) for the moment illC is applicable to
arbitrary profiles, but it contains two in&ite series
that cannot, in general, be replaced by closed forms.
ln the case of a profile for which the conformal trans-
formation to a circle contains a finite number of terms,
the two infinite series may, however, sometimes be
replaced by elementa~ funotions. In the following,
two such systems of profiles will be discussed, the
elliptic and the Joukomski profiles.

THE ELLIPTIC PROFILE

It is well lmown that the Joukowski transformation

r=z+;

maps the circle of radius c/2 with ita center at the
origin of the z plane into a line segment (—c, O; c, O) in
the ~ plane. Also, oiroles concentric with the base
oh%le are transformed into a family of ccmfocal ellipses
with common focii at (—c, O) and (c, 0). If ro(>c/2)
denotes the radius of one of these oircles, then the
semimaj or and the semiminor a.= of the ellipse into
which it is transformed are, respectively, ro+t+J4ro and
To—#@o. The thickness ratio t is then defied as

or

where

c
‘=%

IWow,for the case of the elliptic cylinder, equation (12)
becomes:

Then

and

similarly
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=—rO*sin 219(1-2c? cos 2B+a4)
(

&. Iog g–$
)

4n-2
–K~r~ sin 2/3~,~ -

Therefore, since m=O and ~=0. for an elliptic profile,
equation (2o) becomes:

I (

l+d 1
M,=M, 1+5+~(1–2# COS2~+a4) ~~ log ~–~

)

[
–~Iog (1 –u’)+$K: ~$ log;?; 2% d——

1}
(21)

.

where Mi=~POV02Czsin 2P.

For thick profiles, or for small values of u, this formula
may be expressed as a power series in u. Thus, by
making use of the expansions

(
log g;=2 $+g+;d”+ . . .

)
and

log (1–d) =–(u4+;d+;&+ “ “ “)

it follows, from equation (21), that

[ (
M.=M 1+~+j(l–2# COS2~+u4) ~+;u4+~

+.. .)(
LLt 5234 53ti+gP+ . . .

+2Kt ~+~” +105
)1

i14.-Mf
It is seen from this equation that the value of M,

for the limiting case of a circle, for which t= 1 or u=O, is:

Mc–M,_.L 4+5K?
Al, ‘5 3

On the other hand, equation (21) shows that, for the
limiting case of a straight-line segment for which t=O
or u= 1 and the angle of attack II is finite,

M.–M,==
34,

It is to be noted that, although 34{, and therefore M., is
zero when the angle of attack 9 is zero, the ratio
M,–M,

A4* possesses the limiting value

(“zY)B.o=~[l+(l-F)(+lOg= -$)l ’22)

where Ki=2 sin & according to the condition that the
rear stagnation point occurs at the end of the major
axis of the ellipse. For the two Iimiting cases of the
circle and the straighbline segment, this ratio becomes,
respectively:

(W*>2=:; . ..
and

(“fiY)!2=i ’23)

In appendix A, an independent derivation of equa-
tion (21); with K~= O,is obtained by a direct integration
of the pressures over the surface of an elliptic cylinder.
It shows clearly the superiority of the present general
method, in which all integrations me performed along a
circle at inihity.

It is of interest to investigate the effect of compressi-
bility on the center of pressure. If the rear stagnation
point is supposed to be at the end of the mnjor axis, it
is immediately seen from the second of equations (18)
that, for t=~ and XP= 1,

Since K,=2 sin L?,it follows that the additional circula-
tion AK is given by

AK
()

Av8=——
% 6.,

The problem of determining the additional circulation
thus amounts to-finding an expression for Av@Oat the
stagnation point 8=T. This calculation is given in
appendix B and it is shown there that

‘~~=$(M+N Si?l’/$ (24)

where M and N are functions of the thickness coeffi-
cient t only. Table I presents values of M and N for
various values of t.

TABLE I

-[

t

o
.1
.2
.8
.4
.6

:;
.8

1:I

7 ‘-N

For the straight-line segment, A17/I’,equals irdinity if
the value of o is other than zero but, for very thin
pro~ea and vanishingly small angles of attack,

This result agreea with that given by Glauert (reference
3), namely:

In reference 3, Glauert has also shown that the lifting
force on a body in a compressible fluid is given by

L.=p”v”r

or

LC=L<l+;) (25)
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If c. and C{denote, respectively, the centers of pressure
in the compressible and the incompressible fluids, then
according to equations (23) and (25)

cc
–1

zt—

That is, for a very thin profle and for vaniahingIy small
angles of attack, the center of pressure is unaffected
by the compressibility of the fluid. For the general
elliptic profiles, it foI.lows from equations (21) and (24)
that

ON A BODY IN A COMPRESSIBLE l?LUTO 589

or the motion of the center of pressure away from the
origin is 0.15 percent of the chord. Again, if the angle
of attack is vanishingly small, then cos 13s1 and sin @@
and

L,“V’— 1.14486, ~=1.18174
.34,

Then

c~—c{
—=–0.00392a

cc ( ‘->)+’ti’[%]o~s-+-$ ’og(’-”’)l}
1+#1+(1–2d cos219+a4) *log ~_&

.=

It maybe shown from this expression that, for any given
ellipse, there exists an angle of attack & independent
of the stream veIocity CO,to the first order of p, for
which the ratio cC/c~equals unity. Furthermore, if the

{k* }
angle of attack is ‘eatir than this neutral value of&

{}
‘Wter than unity and the center of pres-then ce/c~is ~.s

{
farther from tiesure c. in the compressible fluid is nearer to

}
origin than the center of pressure Ci in the incompres-
sible fluid. Table II presents the neutral values of B for
the entire range of &pses including the
profile and the oirde.

t

o
.1
.2
.s
.4

:;
;:

1:i

TABLE II

-w

LWM6

:%%
.04.116
.92172
.fn34!3

:%3
.S6M6
.84474
.E2226

— .—
Degrees

straight&e

As a numerical example, consider an diptic cyIinder
with a thickness coefficient t= x and with oo/cO=~.
In this case, the neutral angle of attack p is given by
cos 2@=0.90348, or ~= 12040’. If the a.ngIe of attack
is incre=ed to 15°, say, then

#=1.20776, :i=l.19345
t

and

~=1.o12C*
Now

Cf=:(l —t)

Therefore

=i=o.oo152a,

or the motion of the cents of pressure toward the
origin is 0.39 percent of the chord. In general, when
the mgIe of attack P is vanishingly small, the center
of pressure CCin the comprwible fluid is nearer to the
origin than the center of pressure Cf in the incompres-

()
sible fluid. Table Ill gives values for c= for

\ ~~ u-o
wwious vahws of t and for the oriticaI values of A.s

TABLE HI

o 1:M
.1
.2 .6761V4
.a .4W7
.4 .29.5[4

.ZaZOa
:: .2%344

.25L20
:: .22212

.19714
1:: .13310

L rnmo
.97Mal
.Ww?l
.96459
%x%5

:%%
.0m2
.Qm67
.961fS
.0iin14

o
-. am
-. mmiz
–. mm
-.00577
–.oom
-. CW03
-.mml
-.Imlm
-.wnn
o

THE SYhlhlETRICAL JOUKO~SKl PROFILE

The Joukovrski profl- Me derived by mew of the
conformfd transformation

which maps the circIe of radius a with its center at the
origin of the z’ plane into a line segment (—2a, O; 2a, O)
in the ~ plane. .by other circle of radius ro(>a) with
its center lying on the real axis a-t a distmce ae from O
(see fig. 4) and touching the base tide at (–a, O) is
mapped into a symmetrical Joukowski profile with a
sharp traiIing edge. The variabIm z and z’ are con-
nected by the equation

Z’=a+z

The oircuIation l?, is chosen in accordance with the
Kutta-Joukowski hypotheeie that the rear stagnation
point of the flow occum at the point &t of the circle. In

$The orftfralvalueofp Iedefinedeathat vaIneofp at whfehtbamexhnumvefoeft
of the flufdat the enrfaceof the oticle Justatkloa the local vefoeltyof aormd. z
hatof such ve.fuesof forasetofdff tfoaylfnderewftbthe angleof attaakequalto
zerofegfvenfntable% of Merenee~
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terms of the complex coordinate z, the potantial func- I where
tion of the flow past the circle is I

~=+’i’+%+~’o’%’ “- ““-
The complex velocity at the point A is then given by

w’Y

H

and

J=–R. P.~5
&A,~z

m Ztk(n+ l)roi”+’

—A

Fxaurm4.—TcansforrMtlonof a smnnMtrfcfdJoukowskfpreffleinto a circle.

-+
.-

A

:..

%

,.
.+==

The complex velocity in the r plane is given by

dw=dw dz dz’ (2+?0) (ZZ@-roe-f9z”
m ZZ’ a=”’ z%’+a)(z’-a)

Then, since
z’+a=z+a(l+c)=z+ro and z’—a=z—a(l —e)

it foIlows-that

Therefore
A=ew, Al=2iTo sin f?,A2=a2e~–r~e-~,

and
A,=a%o”WF-S (kd~-e-~) for ns 3

Equ&tion (20) giving the moment M. then may be
written as

M,–ill{_ C(l+e) Ar
~–1+,(1+.) r

3 6(1+4 (1+~)2 (~+J)
+;[1–2 1+,(1+.)+1+6(1+6) 1

(26)

[n appendix C, closed expressions are derived for 1
md J. They may be written as follows:

(1+6)’(I+J)=”~(l -2k Cos 219+k’)

[
(1 ;k)2 log +–(l+2k+;P+P+:k’+ ;fi)]

+$3+2k)(l-2k COs2p+k2)+~(9+5W-cos 219)

+;k(l–k) +&15+ 5k+4M O-w (27)
J---

For Small values of k, or thick profiles,

k(l+ii)’ ~_2~ Cos 2fH-k’)(;+;~
(l+#(I+J)=- 4(

+;~+;~+;~+;~+ s “ “)

+&3+2k)(l-2k COs2P+ H+~(9+5k)(l–co? 2P)

+:k(l–k) +&15+ 5k+4k2) (1–k)’ (28)

It remains to evaluate the ratio of the additional cir-
culation AI’ and the circulation 17~of the incompres-
sible fluid. This ratio may be obtained from equation
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(22) of reference 2 by evaluating AV5)VCfor ~=~ and is
written as foIlows (see appendix D):

:=-*:)d=r=f(M+N&’”‘2’)
where M and ~ depend only on the thickness coefficient
e of the mofde. Table R Lists dues of&f and .ilTfor.
several values of 6

TABLE IV

o 1.m
.IM 1.03242

L Obm
:$ L 11153
.20 1.216s9
.20 1.32617
.40 1.40925
.60 L4f044

L 1

N

8.7%10
8,ml
2.W8s
2.172EE
Lsliw2
1.6624s
LW192

It is interesting to note that M= 1 for a straight-line
profile but that ~ is iniinite on account of a term con-
taining log e. For very thin profiles and vanishingly
small smgles of attack, however,

rt+Ar—=l+;
r~

(30)

This rmult agrea with Gkmert’s weII-known formula
(see section on the elliptic cylinder)

ri+Ar I— =——
r{ 41–Y

1+;+ . . .

It follows from equations (26) and (27) that, for an
infinitely thin profde with an angle of attack so end
that sin PX and cos PSI,

(31)

With ~C=pouo(rt+A)?) and Z,=pOrorz, it therefore
follows from equations (30) and (31) that

~=1 (as in the case of the ellipse). In general, ac-

cording to equations (26) and (29),

h order to gain some idea as to the order of magnitude
of the movement of the omtm of pressure due to com-
pressibility, considar the case of a thin profile, say
e=o.05. Then equation (32) becomes

cc 1+;(7.00142-5.95991 Cos 219)
—=

c’ 1 +:(2.92162–1.86666 COS 2/9)

Letting c, and c, coincide, i. e., c~c,= 1, yields

COS 26=0.99671
or a neutral angle

f?=2°20’

If the angle of attack is taken to be 0°, then

C._ 1+0.52075 p
~–1 +0.52748 p

which shows that cc is nearer the origin than cf. It is
seen that the movamnt of the center of presure is
very small. Thus, even for a Iarge value of zJO/cO,say
0.70, the center of pressure moves onIy about 0.07 per-
cent of the chord toward the origin.

Again, if the angle of attack is increased tc) 4°,

c._l +0.54975 p
~<—1+0.53656 P

..

which shows that cc is nearer the nose of the profle
than Ci. The center of pressure in this case, with
~co=0.70, moves about 0.13 percent of the chord
toward the nose.

This numerical example indicates that, ahhough the
effect of compressibility on the lift and the moment of
a thin airfoil may be Iarge, namely

“~,L’-0.25517, f~-=0.25847

for

f?=o”, :=0.70

and
L.–L<
—=0.26938,

M.-M,
L, =0.26291

.iir;

I +;(M+N Sin’p)

Again, as in the case of elliptic cylinders, a neutral
~alue for ~ is obtained when the centers of pressure in
the compr~ble and the incompressible fluids coincide.
It maybe shown by means of numerical examples that,
when the angle of attaok is 1sss than the neu&d value
of & the center of pressure c. in the compressible fluid
moves from its position Ct in the incompressible fluid
toward the origin and that, when the angle of attack
is greater than the neutral value of & the center of
pressure c. mov= toward the nose of the profile.

(32)

for

gl=4°, :=0.70

the eflect on the cent= of pressure may be considered
negligible.

b azI example of a thicker airfoil, let ~=0.10. The
thiclmess of Joukowslci airfoik is proportional to e and
a value of c of 0.10 gives a m-urn thickness of about
0.13 times the chord, a value rarely exceeded in practice.
For this case, equation (32) becomes:
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~, 1+f(5.43168–A34449 00S 2/S)
—

z—
1 +&2.55446– 1,44293 C.OS2(3)

Putting c,/ci= 1 yields

COS213=0.99161

or a neutraI angle
fi=3°42’

If the angIe of attack is taken to be
then

0° and %/h=O.70,

C, 1.26636_. ~9531
i=m– “

or the center of pressure is displaced toward the origin
a distance equal to 0.12 percant of the chord.

If the angle of attack is increased ta 6° with
vo/h=O.70, then

:= -1=1 .00748.

or the center of pressure is displaced toward the nose
of the airfoil a distanoe equal to 0.19 perwmt of the
chord.

CONCLUDING REMARKS

It has been shown that, for a thin airfoil and for
small angles of attack, the moment is given by equation
(31):

This result is, however, limited to small values of P.
h the other hand, Glauert (reference 2) has shown
that the lift on an airfoiI in a compressible fluid is
given by

(L’=J*=L’ l+;+“ “ “)
The validity of this formula depends on the assumption
that the velocity at the surface of the airfoil does
not differ appreciably from the undisturbed velocity n,
although the velocity in the undisturbed stream may
be large. This assumption means that the airfoil must
be thin and the angle of attack small. The similarity
of the two preceding formulas, insofar as the tit power
of p is concerned, strongly suggests that the expression
for the moment on a thin airfoil at small angles of attack
and for large stream velocities is given by:

M,= “
~“

(33)

This result is indeed implied in Glauert’s work, where
it is stated that the lift dist.fibution along t& chord
remains unaltered but that the strength of each ele-
mentary vortex is increased by the factor (1—P)–*.

In view of this discussion, it would appear that a

more accurate expression for the moment M, may be

obtained by introducing the fackm (1 —p)-+ into equa-
tion (2o). Thus, equation (20) is replaccd by

--l
— h4,+~@I’m cos (13+u)

M’=&

+[–;MWI Cos (P+ d

(34)

This formula differs from equation (20) in that itis

valid for large stream velocities and differs from equti-
tion (33) in that it estimates the effect of large dis-
turbances to the main flow ~ because of tho presence
of an obstacle.

& ‘im example, consider the case of symmetrical
Joukowski airfoils with sharp trailing edges. Equa-
tion (26) is then replaced by

In an analogous manner, the formula for the lift becomes

“=7+%[1+~(–l+M+N sin’p)
1

(36)

AS a numerical example, consider an airfoil for which

6=0.10; I?or”this case

M=l.11153
IV=2.i38585

#=#(1.11163+2.8S5S5 Sinap)

and
(l+c)’(1+t7) =4.80317–4.66366 COS219

Table V gives the values of ~ ~ and of (l+c)Z(l+J)

for several angles of attack,

TABLE V
I

1. 111s3
;

0.13951
1.118)6 .16R59

4 L 126s7 ;;:%
L lmo

: 1.16748 .3zO18
10 1.1!3s66 .4mi8

-.

Table VI lists the values of the ratios illJi14, and
L,/Li as given by equations (35) and (36), respectively,
for various values of Q/cO. The last column gives the
values of ikfa/A4{ (or L~Li) calculated from equation
(33).
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TABLE VI

I I I Im~(d&.) () 2
C*

—.

o Lmln Lm
.40 L0JS71 L09W
.m 1.16732
.tul 1.2$262 H%%
.70 1.4W6 1.423%3
.75 L6W6 1.5S47

1.71817 1.71s82
:% LU&312 L965W

4
I

6
I

8
I

10
I

o
I

2
I

4
I

6
I

8

Figures 5 and 6 show graphs based on table VI with
ilf~hl~ and L~L~, respectively, as ordinates and the
Mach number ti/ti as the abscissa. The dashed curves
represent the C?lauert approximation

Af,_L._ 1
MI–E* ~p

It is seen from an examination of the table and the
curves that, below the neutmd angle of attack (in this
c=e 3042’), the Glauert approximation is better for the
moment than for the lift but that, above this angle, the
approximation is better for the lift than for the mo-

V.
~

FmcBE &-l’he variationof the ratio MJIK~ tith the hfaoh nurok rq’a.

J&
10

. —

1.mm ;.fl&
1.10s43
1.16339 ~ 16478
L Zfum 1.Zm
L 4W0 1.4w2n
L 69M2 L611S9
Lm L 66667
2.0wL9 L 6%22

2.2

2.0

La
L_c
Li

L6

L4

/.2

Lo.
./0 .20 30 .40 Jo

.,
.60 .70 .80

~o

co

FIOUM6.—Thavarfationof the ratio 3iJLi wtth the Mach nnmk dce.

ment. In any case, it appears that, at least for thin
airfoils and for small angIes of attack, the Glauert ap-
proximation for both the moment and the lift is sufli-
ciently good. It then follows that the effect of com-
pressibility on the center of pressure is negligible.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADWSORY COMMITTEE ~o~ AERONAUTICS,
LANGLEY FIELD, VA., Murch Ihj, 19S9.



APPENDIX A

EFFECT OF COMPRESSIBIIJTY ON THE COUPLE ABOUT
AN ELLIPTIC CYLINDER

The moment on u body due to the fluid motion is,
according to equation (l), given by

J
M=- ,[rn]pd8

where the positive direction of the normal vector n is
taken from the body into the fluid. The components
of the vectors r and n are, respectively, (z, y) and (COSnr,
cos ny).
Therefore

[r r.t]=z cos ny–y cos mc

From figure 1, it is seen that

dx=ds cos ny and dy= –ds cos nx
Hence

$ $
M=– P(Xdx+y dy)=–+ p dP

~ow, the equations of transformation horn Carte9ian
to eIIiptic coordinates are:

iz=c Cosh t Cos 7), y=c Sinh t sin q
or

Z=c Cosh (t+iq)

where &takes on all values from zero to infinity and v
takes on all values from O to 2T. Then t=constant
and ~= constant represent confocaI ellipses and hyper-
bolas, respectively, the distance between the foci being
2C.

For any given ellipse ~= a, say,

Z=C Coeh a COS q,y=C Sillh a Sin q
or

#=& (COSIF a C082 q+ainh’ a Sin* q)

Then
d?=–? sin 2q dq

Therefore

.sM=+~%psin27 dq

Now, according to equation (7), the pressure p in a
compressible fluid is given by

p =constant &vt –:Pfiv?+;P$4+ . . . -.

so that

s

h 2r
M,=&z

J
v.~sin 2?dv+&# ~ 0? sin 21@q

o

The last two integrals in this expression are easily
obtained since they involve a knowledge only of the

594

reIocity vi in the incompressible fluid. Thus, suppose
the elliptic cylinder to be in a flow of velocity t~ inclined
It an mqgle LIto the negative direction of the rml axis
md the circulation to be taken as zero. Then, if rOis
We radius of the circle into which the ellipse (=a iz
mapped by the Joukowski transformation,

i+2=2/+7
42

rind the complex potential of the flow past the circle is

t follows that the compla velocity is given by

h the surface of

iizz=~——
42’2

the cylinder, z’=r~”. Therefore,

md

ivhere

No\v, from the Joukowski transformation,

ivhere. the positive sign of the rridicd has been chosen
h order that the regions at infinity of the z and s’
?lanes shall coincide.

Then if (r, y) is replaced by the elliptic coordinates
(f, n), i. e., Z=C cosh (g+iq), it follows that.:

or, on the surface of the cylinder,

Therefore
U=e-e and o=q

and

1–COS 2(q+gl)
$=21 _2e-~ cos 2~+e-~ “v

.-
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with this expression for u?/z#, it is very easy to calcu-
late the last two integrals in the expression for M..

Thus

L
2. I_ Cog Z(q+P) fi ,zqdq

= :Phzb%z” ~ co
2ct-cos Zq

Now

J

2= sin 2nq dq
o Cosh 2a—cos 2q=o

and .

Therefore

SimiIarly,

J

2W sin 2nq dq =0~ (cosh 2a—cos 2TI)i
and

J% cos .Znv dq =zme-~’a cschz ZCi (coth 2a+n)
o (cosh 2ci-cos 2q)2

Hence,

The sum of the two integrals becomes simply

* cosh 2tY-cos 2P
—;WJOVO@ ainh 2a sin 2P

It is much more diflicult to calculate the tirst integral

in the expression for lkfC, for it is neceesmy in this case

to know the velocity 0. at the surface of the elliptic
cylinder in a compr=ible fluid. For this purpose, it
is convenient to make use of equation (13) of reference
2. This equation, when applied to the case of an
elliptic profile, becomes

{

An p COS2f?-$—=-
Q2# sin (?l+e)

ON A BODY IN A COMPRESSIBIJI FLUID 595

where h=rO/r, a= c12r0,and the %Js ere the coellicienta
of the cosine terms in the I?ourier development of o?/z#
in the region of flow. For the elliptic cylinder

l#_I–2A2 Cos 2(e+/9)+x4
~Z— 1—2#A2 cos 2e+u4h4

= ;40SJ (~2acos 2n6+bti sin 2m9)

so that
~o=21+x4(l–20’2 Cos 2/3)

1—0-%4

~h=2d(l +X’)– (1+0-%V) Cos 2gl
(+(1– U4X4) (UA)2’

bti=@)” sin 2P

Now, itisrecalled that AD/norefers to the plane of the
circle into which the elliptic prdle is mapped by the
Joukowski transformation. Therefore

or

But
sin 27

=% d’-’ sin 2nq
1—20-2Cos2q+o’4 ,.1

Therefore, the fit integral in the expression for M=
becomes

The Iast two integrals in this express~on maybe written
as

J
&np-2 1X2=-S(%-?–a~z)dk

n-l o

_5G4M

J
%_yl+xd)—(l+dxd) Cos 2fl

I—&Ah
(l+u4h4) A*-’dA’

n=I

J
ld(l ; X4)— (1 + U%4) 00s 2#d-#

=2
o oql–a’hy

J
V(1 +X4) —(1+U%4) Cos2/3—

d(l–adx’)z
(1+u’x’)dA’

o

.
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Therefore 1 where

s2rv~asin 2~q=;&vo?# sin 2P 1+$ ~;Rf@ ~ ~z
{[

p Cos 26—2
Mi=:@&? sin 2P

+21–0%os2/9_l -2cos2@
1–0’4 ~4 RepIacing @ by o+

+
1—22 COs2~+a4

2U0 7
log &d

[
M.=M 1+$

Finally

(

I+ug 1

1[

1–0-2 cos”2fl_l-2 Cos 2P +;(l–2U2 Cos 2f?+u’) + log ~–~
Me=M, 1+2 p co@p+2 ~_a4 )1

=4

~

p cosh 2CY-COS2P This exprmsion agrees with equation (21) when the
+

I–zd y; 213+g4 Iog !#._# –~
sinh 2ct 1 circulation is taken to be zero.

APPENDIX B

THE CALCULATIONOF AD,/w FOR AN ELLIPTIC
CYLINDER AT $=T

Equation (13) of reference 2 gives an expression for
Av@O independent of the shape of the obstacle. In
order to evaluate Av@O, it is necessary to know the
Fourier development of v?/vo2. For an elliptic cylinder,
with the circulation chosen so that the rear stagnation
point occurs at the end of the major mist it may be
easily shown by means of the Joukowski transformation
and the complex velocity potential of the flow about a
circular cylinder that:

0’2 (1+2X Cose+ N)[l–2k Cos (e+2f9)+Aq—.
V.* 1—2L?WCos26+ Ad

=!fz3+iJ(a. cos ti+bn sin n49)

where
k=ro/r, ir=c/2ro, p is the angle of attack, and r, 8

are the polar coordinates of a point in the region of
flow.

+ The Fourier series for v~/q? is obtained by making use
of the expansion

I
[ 1

=~ 1+25(OW)’ COS2?2$
1 —22A* Cos 2f?+u4h4 1—u~h’ n=l

and it may be shown without difficulty that

4X(1 + x’) swfl
%.+1=

l—o%%
(uA)*”

1

Cos 2B I(uxy’$

Equation (13) of reference 2 may then be written as

(%)8-r=~[sh~+cos ~a(2~+’)1’’2”’’’~~’

inserted and the
htegratiom- performed, it follows after considerable
mt straightforward labor that

– (l–a)’ log (1–u)] (sin S+sin 3/3)
.

–$ [(l+dy log (l+o’2)–(1-&y log (1–o=)]ain p
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The additional circulation AK is given by

( ).AK=-~8r

(See section on the elliptic profile.)
Therefore, with Ki=2 sin & itfollows that

It is interesting to note that, for the limiting case of
a circular cylindtw G=O, the foregoing equation yields

and comparm with Poggi’s result (reference 5)

For the straight-Iine profle a=l, it is seen that ill= 1
and ~= m. For am infinitdy thin proiile and a vanish-
ingly small angle of attack, however,

()AI’
T7 ,ti=;~

and compares with Glauert’s formula (reference 3):

APPENDIX C

EVALUATION OF 1

Since

and ~=a%(kei~-e-q, itfollows that

“ 2?t+l &4=+*

Zln(n+l) h’”+’

= –:4 ~~(1 –Zk Cos 213+k’) log (l–k’)

Therefore

=–$ *(1–2k Cos 2f?+k’) log (1–ky

–&E(l–2k C43S 2~+k’)(1 +~k’+:k4)

+&(9+5k)(l–cos 2P)++ $(1-k)(l-.$)

-=— and k==,
a 1

?’” 1+.s

I!herefore
1–k a I+k

‘=~k and ~= ~
Hence

(1+,) 2#+k)’
[

–_(&2k COS2/9+k’) %P log ~P

( )1
– 1 +:k’+:k’ +&+5k)(l-cos 2@)

+&(3+k) (1–k)’

For small values of k, or thick airfoiIs,

(l+e)’~= (l+k)2(1–2k COS2/t?+k’)
(

~k &ka
96 ’160

+$Ok’+ . . .
)

+:(9+ 5k)(l–cas2#)

+:(3+ k)(l–k)’

EVALUATION OF J

2091424e39
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Therefore

_a4(l —2k cos 2#+P)
TOW (l+;+!)

+&(3+2@ (1–2k COS213+H

()+Ufi(l-k)+;a$$–k

and

(I+k)z
(1+~)’J=T(l–2k COS219+P)~~ log #~z

-(l+:+:)l+i’3+2k)@2kc0 s2’+p)

++k(l–k)++k’(1–k)’

For small VSIUSSof k, or thick airfoils,

(
(1 +e)’J=(l+k)’(1–?k COS2fl+k’) &&

+&F+&k’+ . . .)
+:(3+ 2k)(l–2k COS2P+k’)

+~k(l–k)+~k’(1–k)’

APPENDIX D

EVALUATION OF (ADJ/uo)6.. FOR THE CASE OF A
JOUKOWSKI PROFILE

According to equation (22) of reference 2, @v&J6.~
takes the foIlowing form:

T ,..=sb’[-i+w+2k+2kh’-:ha)
Av8

()

+*(–3–3kh+~k–h’W+:kh’)

+2*[1 –;F+>F ~% (1–k’)]

+8h(l–h)’(2–3fi) kh, l–h
16

[
——

2

+(1–h)’+2h(1–h) log (I+k)]

+4~Uog (1–k)+4° log (Wk)-H}

+$*8’r%$%+ti+:h’p)

1

2 2(1–~1 log (1–kr)]
+4$ – 1+:–;hk+p+ p

+8~~–1~ (1–ii)2+2h(l-h) log (l+k)]

+4~(log (1–k)+4h’ log (l+k)–M}

where

When this expression for (A@J6.= waa obtained, a

sIight error was found in equations (19) of reference 2.
The expressions for al —~1 and bl—~l should be aa
follows:

md

It is to be noted in the expression for (Ava/tij)~., that

most of the terms contain powers of k in the denomi-
nator. It appears at fit., then, that the coefficient.s
~f sin B and sins P may become infinitm for k=O. This
Rpparent difficulty disappears, however, when (Az@$);.,
b espressed as a power series in k. It is then found

Lhat the terms invohing reciprocal powers of k cancel
rmd the following expression results:

()
Atu
x a.,
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